MLEs
ˆθdc=NdcNc
ˆθdck=NdckNc
ˆμdc=1Ndc∑n:yn=cxndˆσ2dc=1Ndc∑n:yn=c(xnd−ˆμdc)2
ˉθdc=1+Ndc12+Ndcp(y=c|→x,D)∝ˉπc∏d∏kˉθdck⋅I(xd=k)
Imputation
Suppose that we are missing the value of xj
- Gaussian discriminant analysis
p(y=c|→xi≠j,→θ)=p(y=c)∑xjp(xj,→xi≠j|y=c,→θ)
∑xjp(xj,xi≠j|y=c,→θ)=D∏i≠jp(xi|→θdc)