Gaussian discriminants -> Quadratic decision boundaries
Log posterior is “The discriminant function”
\(\log p(y = c|x, θ) = \log π_c − (1/2)\log|2πΣ_c | − (x − µ_c )^T Σ^{−1}_c (x − µ_c ) + const\)
Let \(p(y=c|x,\theta)=p(y=c'|x,\theta)\)
Then
\((x − µ_c )^TΣ^{−1}_c(x − µ_c) - (x − µ_{c'} )^T Σ^{−1}_{c'} (x − µ_{c'})=f(\pi_c,\pi_c',\Sigma_c,\Sigma_c')\)
So the decision boundaries between classes are quadratic in \(x\).
GOTO workbook