3.2 The Normal Equations

  • Now we want to peal back the curtain and see how to solve the least squares problem.

  • One solution depends on this Theorem: If x satisfies \mathbf{A}^T(\mathbf{A}\mathbf{x}-\mathbf{b})=\boldsymbol{0}, then \mathbf{x} solves the linear least-squares problem, i.e., \mathbf{x} minimizes \| \mathbf{b}-\mathbf{A}\mathbf{x} \|_2. (Proof in text)

  • Expanding out \mathbf{A}^T(\mathbf{A}\mathbf{x}-\mathbf{b})=\boldsymbol{0} yields the normal equations:

\mathbf{A}^T\mathbf{A}\mathbf{x}=\mathbf{A}^T\mathbf{b}