3.2 The Normal Equations
Now we want to peal back the curtain and see how to solve the least squares problem.
One solution depends on this Theorem: If \(\mathbf{x}\) satisfies \(\mathbf{A}^T(\mathbf{A}\mathbf{x}-\mathbf{b})=\boldsymbol{0}\), then \(\mathbf{x}\) solves the linear least-squares problem, i.e., \(\mathbf{x}\) minimizes \(\| \mathbf{b}-\mathbf{A}\mathbf{x} \|_2\). (Proof in text)
Expanding out \(\mathbf{A}^T(\mathbf{A}\mathbf{x}-\mathbf{b})=\boldsymbol{0}\) yields the normal equations:
\[ \mathbf{A}^T\mathbf{A}\mathbf{x}=\mathbf{A}^T\mathbf{b} \]