Exercises
1a. Make side-by-side surface and contour plots of f(x,y)=2y+ex−y,[0,2]×[−1,1]
f = (x,y) -> 2*y + exp(x-y);
plotlyjs(); # use better 3D renderer
m = 60; x = range(0,2,length=m+1);
n = 50; y = range(-1,1,length=n+1);
F = [ f(x,y) for x in x, y in y ];
plot(x,y,F', layout=(1,2), levels=10,fill=true,aspect_ratio=1,
color=:redsblues,
xlabel="x",ylabel="y");
surface!(x,y,F', l=0,leg=:none,
subplot=2, color=:redsblues,
xlabel="x",ylabel="y",zlabel="f(x,y)")
2a. make side-by-side surface plots of fx and fy using Chebyshev spectral differentiation matrix
_,Dx = FNC.diffcheb(m,[0,2]);
_,Dy = FNC.diffcheb(n,[-1,1]);
surface(x,y,(Dx*F)',layout=(1,2), l=0,leg=:none,
color=:redsblues,
xlabel="x",ylabel="y",zlabel="df(x,y)/dx");
surface!(x,y,(F*Dy')', l=0,leg=:none,
subplot=2, color=:redsblues,
xlabel="x",ylabel="y",zlabel="df(x,y)/dy")
3a. Make a contour plot of the mixed derivative fxy