Newton for nonlinear systems
- more complicated with multiple variables and equations
- hard problem to tackle in the general case
- based on Taylor series: linear part of function near x plus higher order term
\[ \mathbf{f}(\mathbf{x} + \mathbf{h}) = \mathbf{f}(\mathbf{x}) + \mathbf{J}(x)\mathbf{h}+O(||\mathbf{h}||^2) \]
Multidimensional Newton’s method:
Given \(\mathbf{f}\) and a starting value \(\mathbf{x}_1\), for each \(k = 1, 2, 3, ...\):
- Compute \(\mathbf{y}_k = \mathbf{f}(\mathbf{x}_k)\) and \(\mathbf{A}_k = \mathbf{f}'(\mathbf{x}_k)\)
- Solve linear system \(\mathbf{A}_k\mathbf{s}_k = -\mathbf{y}_k\) for the Newton step \(\mathbf{s}_k\)
- Let \(\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k\)