3.3 QR factorization

Orthogonal and ONC matrices

  • orthogonal : uTv=0

  • orthonormal : orthogonal + uTu=1

  • ONC : A matrix who’s columns are an orthonormal collection.

Properties of n×k matrix:

  • QTQ=I (k×k identity)

  • ||Qx||2=||x||2

  • ||Q||2=1

  • orthogonal matrix: A square ONC matrix

Suppose Q is an n×n real orthogonal matrix. Then: 1. QT=Q1. 2. QT is also an orthogonal matrix. 3. κ(Q)=1 in the 2-norm. 4. For any other n×n matrix A, . 5. If \mathbf{U} is another n\times n orthogonal matrix, then \mathbf{Q}\mathbf{U} is also orthogonal.