3.3 QR factorization
Orthogonal and ONC matrices
orthogonal : uTv=0
orthonormal : orthogonal + uTu=1
ONC : A matrix who’s columns are an orthonormal collection.
Properties of n×k matrix:
QTQ=I (k×k identity)
||Qx||2=||x||2
||Q||2=1
orthogonal matrix: A square ONC matrix
Suppose Q is an n×n real orthogonal matrix. Then: 1. QT=Q−1. 2. QT is also an orthogonal matrix. 3. κ(Q)=1 in the 2-norm. 4. For any other n×n matrix A, ‖. 5. If \mathbf{U} is another n\times n orthogonal matrix, then \mathbf{Q}\mathbf{U} is also orthogonal.