52. VQ-VAE

Learning objectives

  • Introduce VQ-VAE

Variational Auto-Encoders

Variational Auto-Encoders

In AI architecture, variational autoencoders simulate the latent space (between the encoder and decoder)—usually with a mixture of Gaussian functions—to maximize the ELBO (evidence lower bound)

VAE Gaussians

without

without VAE

with

with VAE

VQ-VAE

VQ-VAE

Vector quantized variational autoencoders (VQ-VAE) utilize an discrete embedding space

  • for example: 32x32 embedding space of vectors

VQ-VAE